HOW DOES A PARTICLE GET FROM
A TO. B2

TED BASTIN

I think it is important to try to see quantum theory as one among
different possible theories. I think we must make an effort to assess
its successes and failures from a point of view which does not implicitly
assume its essential correctness, while yet trying to give proper
weight to the different reasons people have for thinking that the
general picture presented by quantum theory is the only possible one.

Quantum theory was developed to take into account a certain class
of experimental facts—namely those facts which forced on our atten-
tion that there exist discrete attributes of the physical world which
cannot be incorporated within an essentially continuous classical
theory. It seems reasonable to ask how far quantum theory has
succeeded in this task.

Of course, the early forms of the theory never attempted to explain
discreteness in the sense that they could be said to have incorporated
both the discrete and the continuous within one theoretical structure.
They simply imposed discreteness as a mathematical constraint on
the range of values available as allowable experimental results of
the measurement of certain physical quantities. (This description is
directly applicable to the energies of atomic structures. It covers
measurements involving free particles if we take the familiar prob-
abilistic interpretation of the constant in the uncertainty relation
between simultaneous momentum and position measurements.)

As quantum theory developed, however, attitudes towards the
problem of explaining the discrete values seem gradually to have
changed. At present a majority of physicists probably regard the
modern form of the quantum theory as a coherent intellectual struc-
ture within which both discrete and continuous quantities appear
properly related, and consider that modern quantum theory gives us
an understanding of the intrusion of discreteness within continuum
physics.

I regard Bohr’s complementarity doctrine also as a theory whose
first and essential function is to explain the existence of atomicity
in circumstances where only concepts of continuity physics are
considered operationally well-defined. The finite value of Planck’s
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constant is the essential connecting link between the continuum
concepts and the explanation of discreteness.

This account of Bohr’s complementarity seems unacceptable to
most: there is however, one problem, in the context of the explanation
of the discrete, which no physicist would claim to have solved. This is
the calculation of the values of the atomic and other basic physical
constants. A quite elementary understanding of quantum theory
may give us the idea that the uncertainty relation specifies a (sta-
tistically defined) lower bound on physical measurement to which the
constant specifies a numerical value. It then turns out that to specify
any such idea as this exactly one must derive absolute units from the
familiar dimensionless constants which can be formed as ratios of the
dimensional constants. These dimensionless constants can therefore
be regarded as parameters which determine the scale of the micro-
scopic phenomena in terms of the cosmological. This is how we see
them if we think of a continuum physiecs with constants mathe-
matically imposed from outside the theory. If we think in terms of
a closed or self-sufficient continuum physics then they become para-
meters which can be interpreted as coupling eonstants or interaction
constants which specify the relative strengths of the fundamental
fields of physics. These constants have for a long time been a source
of interest to those who would like to imagine the quantal situation
from a starting point which does not presuppose the correctness of
current quantum theory. The best-known contribution to the history
of thinking about these constants was Eddington’s conjecture that
they are more fundamental than the dimensional constants (#, ¢, and
the like) of which they are usually written as ratios, and that they
may well originate in hitherto obscure algebraic relationships like
group structures. This contention was opposed by Dirac,® who
argued that no importance need be attached to the values of the
interaction constants since they might change with time, in which
case these values at any particular epoch would not be significant.

The difference in outlook which underlies such different evaluations
of the significance of the values of the interaction constants can again
be reduced to a difference of opinion as to whether quantum theory
really explains the existence of discrete magnitudes. If it does explain
them then there remains a problem which may or may not be soluble
within quantum theory itself —namely, the calculation of the actual
numerical value of the constants though there can be different
opinions as to the seriousness of this problem’s being left unsolved.
If, on the other hand, quantum theory has not given an adequate
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explanation of discreteness itself, then the constants constitute a
much more pressing problem, for one has—if one is concerned at all
with the generality in physical theory—to construct first an existence
theorem :—namely that definite interaction constants exist (i.e. that
they have some value rather than no value) and only then separately
to calculate the values they actually have. An argument like Dirac’s—
accordingly—is only cogent at all if one is already independently
assured theoretically of the existence of atomicity in the world.

I have now made a case for thinking that quantum theory has not
explained the most basic fact it set out to deal with. Adopting this
view, accordingly, for the sake of argument, I must first discuss the
nature of its success. I shall assume—to put a complex position in
a sharp, unambiguous, if crude way—that quantum theory has its
main area of undisputed success in the theory of atomic spectra and
in solving problems (such as those of the theory of solids) which arise
as fairly natural extensions of that theory.t I argue, moreover, that
in this area the discoveries made by quantum theory have been dis-
coveries of combinalorial relations, and of predictive schemes expressed
in terms of such relations. Where there has been dynamics, in the
strict sense, it has been imported from classical ways of thinking, and
a way of working has been established in which a rather uneasy
association of combinatorial scheme with classical type dynamics has
become the rule, with a generalized faith in the unitary nature of
physical explanation to serve in place of any real synthesis of these
two fundamentally different kinds of thinking. Hence we think in
classical concepts which presuppose indefinite divisibility of material,
and express the presupposition in the mathematical representation of
the space and time continua, and yet we work formally with a dis-
crete theory. The difficulties produced by this situation were dis-
cussed, in one way or another, in most of the papers in the colloquium.
I shall discuss the situation as it concerns the concept of particle path
or frajectory, because this fundamental classical notion—though
simple—presents the characteristic difficulties that will be en-
countered by any combinatorial theory devoid of dynamics.

In a standard text—Chapter 8 of their Quanium Mechanics—
Non-Relalivistic Theory—Landau and Lifschitz @ use the mechanics
of a particle moving in a straight line to introduce and demonstrate
the essential difference between quantum theory and classical
dynamics. In the former, the path of the particle becomes progres-
sively smoother as more observations are made of the particle. In the

1 C. W. Kilmister’s paper ‘Beyond what?’ in this book, takes a similar line.
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quantum-theoretical case things are different; the observations
generate a swarm of points rather than a progressively more deter-
minate line which could be interpreted as ‘the path of the particle’
(fig. 1). In this text, this difference is made the experimental founda-
tion upon which a mathematical superstructure is built. Quantum
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theory has to kick off somewhere and this is quite a good place; it is
not as neat as Dirac’s @ basing the mathematical superposition
principle on the behaviour of a composite photon path in a Jamin
interferometer, but it is a considerably more useful approach when
we are up against problems raised by high energy particles.

When we think about the concept of the path of a quantum particle
in the way suggested by Landau and Lifschitz, it is very tempting to
idealize the phenomenon by insisting that except where we already
have an observation of the position of the particle we can have no
knowledge of any sort of the whereabouts of that particle. A given
particle process—in this idealized way of looking at things—is that
process and no other. Thus, for example, to obtain a ‘repetition’ of
that process with one additional piece of information added (say
another collision or disintegration) may require a quite prohibitive
increase in the difficulty of the experimental arrangements that are
necessary to give a reasonable chance of securing the phenomenon, as
well as a quite different mathematical procedure for handling the
resulting experimental information. This idealization is one that is
becoming more familiar as the operationally realistic approach in the
case of high energy particles.

This aspect of the quantum picture is also stressed by Feynman®
in his presentation of fundamentals, even for low energies. Discussing
the two-slit experiment, Feynman observes: ‘Now we are not allowed
to ask which slit the electron went through unless we actually set up
a device to determine whether or not it did. But then we would be
considering a different process.” (Feynman’s italics).



HOW DOES A PARTICLE GET FROM 4 TO B? 287

I shall call the idealization that interpolation or extrapolation of
points can only have significance on the basis of new experiments
being conducted to define each new point, the quantum idealization.
It is tempting to maintain that the quantum idealization is the whole
story. However no physicist ever behaves as though it really is. The
physicist always in fact relies on there being a ghostly form of the old
classical notion of continuity of path somewhere in the background.
For example, suppose we have three cloud chambers 4, B, C,

A B C

Fig. 2

arranged as shown in fig. 2, and suppose that photographs are taken
simultaneously of 4 and C but not of B. And suppose that the ‘path
of a particle’ is observed at aa’ and at cc’. The quantum idealization
would require us to say that we had no justification whatever for
asserting that if we had photographed B at the same time as we
photographed 4 and C, then we should have got a track bb" (shown
dotted). Obviously what the quantum idealization dictates in this
sort of case is unreasonable, and physicists are right in their general
practice, but to understand how there can be a limited degree of
applicability of the classical picture of the continuous path is very
difficult.

It is possible to take a rigid ‘ensemble’ view of particle path,
according to which the ‘particle’ is completely undefined for single
(or even few) observations. A logically consistent picture can be
achieved this way but then all interest shifts to the question why
ensembles of single observations so cohere as to provide the appear-
ance of a particle trajectory. I should regard the ensemble fagon de
parler as pointless in the absence of a detailed theory which
accounted for this coherence.

Moreover, that Landau and Lifschitz present a sequence of cases,
makes no difference to my contention that there is more justification
for the classical picture than the quantum idealization can provide.
The particle path may become progressively fuzzier as greater
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localization is demanded, but even with high localization a sort of
Milky Way of points is left, which has to be explained somehow.
If one takes the quantum-theoretical position literally then the
surprising thing is not that ‘particle path’ becomes an indefinite
concept but that there is any sense at all to be attached to it. Pre-
sumably quantum theorists believe that if the solution of the relevant
equations could be pursued in sufficient detail then the trajectory-
like distribution of points would emerge. This belief however is a pure
act of faith and in fact is extremely implausible unless the trajectory
is inserted into the theory at some point. In fact there isn’t a speci-
fically quantum-theoretical concept of the particle path to be found
anywhere.

I now consider the question: what is the minimum that quantum
theory has to take over from classical thinking to get a particle
trajectory ? To this end I shall look for a formalized and non-intuitive
presentation of the classical concept of particle path; then and only
then, can we decide whether what we take over is consistent with the
principles of quantum theory or not. Our first essay in this direction
might naturally be to consider the definitions of the straight line that
are provided by classical mathematical analysis. Does, for example,
the Dedekind cut satisfy our requirements? It isn’t much good. The
operations that are imagined in defining continuity in the Dedekind
manner don’t seem to have anything to do with the considerations
that the classical physicist invokes when he wants to say what he
means and what he does not mean by a particle having moved from
A to B.

An account of continuity that is operationally more adequate to
the physicist’s underlying problem is that used by L. E. J. Brouwer,
for whom the continuity of a line required in the first place the possi-
bility of indefinite interpolation of points. (A view which was part of
the general constructivist philosophy of Brouwer in which one could
significantly speak of a mathematical entity if and only if one had
specified an algorithm for constructing that entity.) In this case new
points must be generated by some finite process, and what is
needed for continuity is to know that there is no limit to the
process of selecting two points and interpolating a new one
between them (i.e. adding a new point in a given order to the
existing set).

We can now list the main requirements necessary to define a suffi-
cient degree of classical continuity in a quantum-theoretical set in
order to provide a realistic particle path.
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1. The points must be discriminable. One must be able to know
one from another. (In the classical idea of a line, of course, one would
always be able to make measurements independently of the definition
of the points which would settle at once the discriminability of the
points.)

2. The points will have to be ordered. That is to say each point will
have to have a definite successor and a definite predecessor at any
given stage of building up of the line in order that meaning can be
attached to the instruction ‘interpolate a point between two existing
ones’.

3. There must be a ‘topological cohesion’ of the points. It is this
property of topological cohesion which Landau and Lifschitz point
out degenerates as more and more precision is demanded in the
localization of points.

Requirement number 3 is intuitive and it is not clear how to
express it exactly in general. However, there exists one special case
in which it can be given a clear meaning. This is the case of a ‘space
of potential infinity’ in which a construction rule is defined for new
points and in which experimental discovery or ‘observation’ of the
new points at this abstract level is identical with the construction
process. In this special case the smoothness of the curve or ‘tendency
of the points to keep together’ is not something over and above the
discriminating and ordering of the points, but is the same process.
It is not to be deduced from these remarks that all trajectories will
be smooth—only that the concept of cohesion has been defined and
further discussion of detailed cases (like the sequence I have quoted
from Landau and Lifschitz) will be possible to describe different sorts
of cohesion.

My paper in Part v is an application of a theory which uses a ‘space
of potential infinity’ of precisely the sort that I have just described
and the foregoing note really provides the general arguments to
justify such a radical attempt.
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